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2 Departamento de Matemática, CCNE, Universidade Federal de Santa Maria,
97105-900 Santa Maria, RS, Brazil

E-mail: jjrn01@cantv.net and alex@lana.ccne.ufsm.br

Received 19 March 2004
Published 11 June 2004
Online at stacks.iop.org/JPhysCM/16/4495
doi:10.1088/0953-8984/16/25/009

Abstract
We consider the phase diagram of the BCS (Bardeen–Cooper–Schrieffer)–BE
(Bose–Einstein) crossover in the ground state (T = 0 K) of a dx2−y2 -wave
superconductor, with a nearest neighbour tight binding structure, when we take
into account the Debye (phononic) frequency around the chemical potential, µ.
This approach is a continuation of the work of den Hertog (1999 Phys. Rev. B
60 559) and that of Soares et al (2002 Phys. Rev. B 65 174506). The latter
authors considered the influence of the second-nearest neighbours, but neither
set of authors took into account the effect of the Debye frequency, ωD, or the
influence of the next nearest neighbour matrix hopping element. We have found
the following results: (1) there is not a metallic phase—that is, �/4t → 0
when V/4t → 0, ∀ ωD/4t , ∀ α′ ∈ (−1/2, +1/2), and ∀ n, where n is the
carrier density per site, V is the attractive interaction, t is the nearest neighbour
hopping integral, and α′ is the next nearest neighbour hopping ratio; (2) the
BCS–BE crossover line is strongly affected by the presence of ωD/4t and that
of α′—actually, the values of V/4t needed to achieve the Bose–Einstein regime
become extremely large for small values of ωD/4t ; and (3) both �/4t and µ/4t
strongly depend on the values of ωD/4t and α′. The results (1) are in agreement
with the ones found by Perali et al (2003 Phys. Rev. B 68 066501 (Preprint cond-
mat/0211132)) and Rodrı́guez-Núñez et al (2003 Phys. Rev. B 68 066502), and
in disagreement with those of den Hertog and Soares et al.
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1. Introduction

The existence of a crossover from BCS (Bardeen–Cooper–Schrieffer) superconductivity
to a Bose–Einstein (BE) condensation regime was found in the pioneering work of
Eagles [1], Leggett [2], and Nozières and Schmitt-Rink [3] (for s-wave superconductivity).
The importance of this crossover arises from the belief that the high temperature
superconductors (HTSC) [4] are in the intermediate coupling regime, that is, V/4t ≈
O(1) [5, 6], where perturbation theory is not applicable.

In the following we will study the BCS–BE crossover considering a tight binding structure
given by

ε(�k) ≡ −2t[cos(kx) + cos(ky)] + 4t ′ cos(kx) cos(ky) (1)

which is obtained by Fourier analysing the kinetic part of the model Hamiltonian presented
in equation (2). t is the value of the nearest neighbour hopping integral and t ′ is the next
nearest neighbour hopping integral. In spite of the fact that this tight binding structure is too
simple to explain the experimental data (mainly from ARPES (angle-resolved photoemission
spectroscopy) experiments [7]), our main concern here is studying the effect of the Debye
frequency, ωD/4t , on the BCS–BE crossover phase diagram at T = 0 K for a dx2−y2 -wave
superconductor. We will consider positive and negatives values of t ′ ≡ α′t , namely, |t ′| � 0.5t
or |α′| � 0.5. It is possible to go from positive to negative values of α′ by doping [12], assuming
that the nnn hopping (overlap of nnn orbitals) depends on the doping. For the Bi2Sr2CaCu2O8+δ

compound, α′ = 0.096/0.5908 ≈ 0.162 [8].
We point out that the BE–BCS crossover has also been observed in fermionic atom pairs.

For example, Regal et al [9] have observed condensation of fermionic atom pairs in the BE–
BCS crossover regime. A trapped gas of fermionic 40K atoms is evaporatively cooled to
quantum degeneracy and then a magnetic field Feshbach resonance is used to control the
atom–atom interactions. The tuning of the atom–atom interaction allows one to control the BE–
BCS crossover. Furthermore, a Bose–Einstein condensation of molecules has recently been
observed [10]. This BE–BCS crossover has been studied theoretically in several papers [11].

This paper is organized as follows. In section 2, we present the system model and the
equations to be solved using the mean field approach to superconductivity. In section 3 we
present our results for different values of ωD/4t . In section 4 we present our discussion of the
results, conclusions, and an outlook.

2. The system model and self-consistent equations

We use an effective Hamiltonian, in the BCS sense, which describes a two-particle interaction
in real space and in the Cooper channel [13]:

H =
∑
i, j,σ

ti, j (c
†
i,σ c j,σ + H.c.) − µ

∑
i,σ

ni,σ − V
∑
〈i, j〉

c†
i,↑c†

j,↓c j,↓ci,↑ (2)

where ti, j = −t for nearest neighbours (nn), ti, j = t ′ ≡ α′t for next nearest neighbours (nnn),
and ti, j = 0 otherwise, µ is the chemical potential, H.c. means Hermitian conjugate, and V is
the absolute value of the attractive interaction. From now on, our energy scale is taken to be 4t .
〈i, j〉 stands for nearest neighbour sites. The dx2−y2 -wave symmetry has also been obtained by
Quintanilla et al [14] using an attractive Dirac delta function (shell model). In a more recent
paper, Quintanilla and Györffy [15] have discussed the stability of a superconductor with a
combined symmetry, namely, s- and d-wave symmetry. As we will explore additionally the
effect of the band structure, we refer the reader to the paper of Kuboki [16] where he discusses
the stability of several superconducting symmetries due to specific values of t and t ′. However,
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in the present paper we consider only the case of d-wave symmetry. Let us mention that our
Hamiltonian of equation (2) is described in fermionic variables. As we will find the crossover
line where the BCS region touches the BE region (the bosonic region of the phase diagram),
our Hamiltonian is not suitable for studying that bosonic region.

Following the notation given in [17, 18], we solve for �0 and µ the following set of
self-consistent equations:

1 = V

2N

∑
�k

χ(�k)ϕ2(�k)√
[ε(�k) − µ]2 + �2

0ϕ
2(�k)

n = 1 − 1

N

∑
�k

ε(�k) − µ√
[ε(�k) − µ]2 + �2

0ϕ
2(�k)

(3)

where χ(�k) = 1 for |ε(�k) − µ| � ωD, and χ(�k) = 0 for |ε(�k) − µ| > ωD. ωD is the Debye
frequency; ϕ(�k) and ε(�k) give the tight binding structure (see equation (1)). The difference of
this work and [17, 18] lies in the presence of the factor χ(�k), which restricts our summation to
the neighbourhood of the chemical potential. In equations (3), N = Nx × Ny is the number
of lattice points. In section 3 we present the numerical results.

3. Numerical results for the interaction potential and the tight binding structure chosen

The numerical results were obtained by solving the continuous version of equations (3) which,
in a fixed-point iteration form, are given by

�i+1
0 = �i

0
V

2π2

∫ ∫
d�k χ(�k) ϕ2(�k) Fi (�k)

µi+1 = n − 1 + 1
π2

∫ ∫
d�k ε(�k) Fi(�k)

Gi

Gi = 1

π2

∫ ∫
d�k Fi (�k)

Fi (�k) = 1√
[ε(�k) − µi ]2 + (�i

0)
2ϕ2(�k)

i = 0, 1, 2, . . .

where the initial values �0
0 and µ0 where obtained by applying a steepest descent technique [34]

to the first two equations above. The fixed-point iteration was then performed up to a relative
tolerance of 10−4, where the integrals were calculated numerically by means of Gauss–Kronrod
rules [35] with a relative tolerance of 10−5.

In the present work we have taken a d-wave superconducting order parameter due to the
fact that experimental data [19, 20] on the high temperature cuprates points to this symmetry.
The order parameter, with dx2−y2 symmetry, which is used in equations (3), is given by [21, 22]4

�0(�k) = �0ϕ(�k). (4)

Numerical results are presented in figure 1. We observe that:

(1) �/4t strongly depends on the value of ωD/4t—thus, we find that �/4t increases with the
value of ωD/4t for fixed values of n and V/4t ;

4 This order parameter symmetry has four nodes along the diagonal of the Brillouin zone.
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Figure 1. The upper panel shows the superconducting order parameter �/4t versus
V/4t for ωD/4t = 0.5, α′ = −0.10, and different carrier densities n =
0.05, 0.1, 0.15, 0.20, 0.30, . . . , 0.90—the lowest curve corresponding to n = 0.05 and the
uppermost curve to n = 0.90. The lower panel shows the corresponding µ versus V/4t plane.
The dotted horizontal line at µ/4t = −1 + α′ = −0.9 shows the criterion used to determine the
BCS–BE crossover.

(2) the value of the superconducting order parameter goes to zero for small values of the
attractive potential—that is, �/4t → 0 as V/4t → 0.

This result is at odds with the results presented in [17, 18]. The reason for this discrepancy is
explained by our choice of a continuous approach to equations (3) which is, in fact, equivalent
to a dramatic increase in the number of lattice points.

These results imply that we do not observe a metallic phase as was previously claimed
by the authors of [17, 18]. To be sure that we do not have a metallic region, that is, that
�0/4t → 0 exponentially for V/4t → 0, a more detailed version of figure 1 (not shown
here) has been analysed and it certainly shows that there is an exponential behaviour of �0/4t
towards zero for small values of V/4t , and no traces of a metallic behaviour or an insulating
phase are observed. This result disagrees with those of [17, 18]. However, Perali et al have
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Figure 2. The upper panel presents the crossover phase diagram for ωD/4t = 0.50, for several
values of α′: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. The lower panel shows the �0/4t versus V/4t plane
for the corresponding condition for µ, namely, µ/4t = −1 + α′. In both panels the lowest curve
corresponds to α′ = 0.0, the next curve to α′ = 0.1, and so on.

resolved this point in [23], where they have used a discrete approach with Nx = Ny = 1024,
i.e., they did not find a metallic phase. See also [24].

In figure 2 we show the crossover phase diagram for ωD/4t = 0.5 and several values of α′.
On each of these crossover curves we have µ/4t = −1 + α′. In consequence, we have a single
line of points (n, V/4t) which separates the BCS phase from the BE phase. This line is known
as the crossover line, since to the left of each of these curves we have Cooper pairs whose two
electrons are well separated in real space (the BCS region), while to the right of this curve we
have pairs of two electrons which are on top of each other (the BE region). The approach that
we have followed (superconductivity à la BCS) is valid to the left of this crossover line. To
the right of this line we have to use a bosonic description for our system.

In figures 3–5 we present the n versus V/4t phase diagrams for ωD/4t = 0.5 and
α′ = +0.2, 0.0, and −0.2, respectively. The insets in these figures present the corresponding
phase diagrams for ωD/4t = 0.4, 0.5, and 0.6. In figure 3 the range of the attractive interaction
is restricted to V/4t ∈ (0.0, 15.0). It is clear in this figure that for increasing values of ωD/4t ,
smaller values of V/4t are necessary to obtain the line of crossover from the BCS region (to
the left of the line) to the BE region (to the right of the line). In figure 4 (α′ = 0.0) the range of
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Figure 3. We present the crossover BCS–BE phase diagrams for ωD/4t = 0.5 and α′ = +0.2
where both the fermionic region (BCS) and the bosonic region (BE, i.e., µ/4t < −1.0 + α′) are
shown. The inset shows the crossover lines for three different Debye frequencies ωD/4t = 0.4,
0.5, and 0.6.

Figure 4. The same as figure 3, but for α′ = 0.0.

attractive interaction is (17.0, 42.0) and a comparison between this figure and figure 3 shows
that for decreasing values of α′ the crossover point for a given value of n moves to higher values
of V/4t . Furthermore, in figure 5, where α′ = −0.2, the interval for attractive interaction is
40 < V/4t < 120 since the crossover line is now located at much higher values of V/4t .

4. Discussion, conclusions, and outlook

We have calculated the superconducting order parameter,�/4t , and µ/4t as functions of V/4t ,
considering the influence of the Debye frequency, ωD/4t . From figures 1–3 we conclude that
ωD/4t plays an important role in the fixing of the absolute values of the superconducting order
parameter and the chemical potential.
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Figure 5. The same as figure 3, but for α′ = −0.2.

We recall that in order to reach the BCS → BE crossover the following condition has to
be fulfilled: µ/4t = −1 + α′ for a given α′. Again, for V/4t → 0 we have an exponential
behaviour, namely, �0/4t ∝ exp(−4at/V ), where a is a numerical factor a ≈ O(1), as has
been proved analytically by Perali et al [23].

In figures 3–5 we present the crossover BCS–BE phase diagrams for ωD/4t = 0.5
and α′ = 0.2, 0.0,−0.20, respectively. The BCS (fermionic) and BE (bosonic) regions are
shown. The insets in these figures show the crossover lines for different Debye frequencies
ωD/4t = 0.4, 0.0, and 0.6. From these figures we observe that, for a given carrier density n,
the crossover point moves to the right (i.e., to higher values of V/4t) when the value of α′ is
decreased. For instance, for α′ = −0.20, we see that the crossover line is only reached at very
high values of V/4t . In addition, from the inset of each of these figures, we note that smaller
values of ωD/4t also demand higher values of V/4t to reach the crossover line in these phase
diagrams where µ = −1 + α′. We point out that in figure 5 the range of values of V/4t is
between 40 and 120. Even though these values of V/4t are beyond the plausible values for the
cuprates or other materials of interest, we present this figure to clearly show that for α′ < 0
the crossover line can only be obtained at very large values of V/4t .

To our belief, previous authors [17, 18, 23] have not considered the influence of ωD/4t
because its presence demands really strong values of the attractive potential to obtain the BCS–
BE crossover. As it is known that the BCS approximation works for V/4t ≈ O(1), when large
values of V/4t are considered the effect of pairing fluctuations has to be taken into account,
as it was many years ago by Schmid [25]. That the Debye energy cut-off, ωD, moves the
crossover line to the right is due to the feature that for ωD/4t �= ∞ fewer �k-states are available.
This is equivalent to saying that larger values of V/4t are needed to reach the bosonic regime,
namely, where the two electrons of the Cooper pair sit on top of each other.

Throughout this work the condition µ/4t = −1.0 + α′ has been used as the criterion
for the BCS–BE crossover line. However, very recently, Alexandrov [27] has put forward an
alternative condition for reaching the crossover. It is given by EF ≈ π�, where � is the binding
energy and EF is the Fermi energy. According to this criterion the pairing is individual in many
high temperature cuprate superconductors. Also, we mention Kopeć [28], who has studied the
crossover from a superconducting phase to a regime where the amplitude of the order parameter
controls Tc. He establishes a self-consistent theory (involving both fermionic and bosonic
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Figure 6. We present the crossover phase diagram for α′ = 0.0. The solid curves are for
Alexandrov’s condition, µ/t = −4 + 4α′ + π�0/t , with ωD/t = ∞. The dashed curves represent
the BCS–BE crossover phase diagrams with α′ = 0 and ωD/t = ∞ and 4.0. The upper dashed
curve corresponds to ωD/t = ∞.

degrees of freedom), and calculates the superconducting phase coherence Tc = Tc(|U |), where
|U | is the absolute value of the attractive Hubbard model in three dimensions. According to
his results [28], Tc = Tc(|U |) exhibits a maximum where the behaviour crosses over from
BCS to BE condensation. He examines a pseudo-gap in the normal state which emerges as a
precursor of superconductivity at Tg due to the state with bound pairs but without long range
coherence. We say that this precursor scenario is at odds with experimental results on the
cuprate superconductors given by Tallon and Loram [29], where the pseudo-gap persists down
to zero temperature and is independent from superconductivity.

In figure 6 we present the phase diagram (n versus V/t , upper figure) according to the
condition given by Alexandrov [27], namely, µ/t = −4 + 4α′ + π�0/t (solid curve), and
the BCS–BE crossover phase diagram according to the condition µ/t = −4 + 4α′ (used in
the text). We quickly see that to obtain the BCS–BE crossover phase diagram we need higher
values of V/t . For the lower curve (on the right axis) we can read off the value of �0/t . It is the
presence of the additional contribution π�0/t which moves the phase diagram of Alexandrov
to small values of V/t . We should mention that we have used the following approximation:
�0 ≈ binding energy of two electrons bound by an attractive interaction.

We would like to study the effect of a phenomenological pseudo-gap on the crossover
phase diagram, which was considered in another context in [30, 31]. In this case, the normal
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state one-particle self-energy, in terms of the free one-particle Green function, is given by

�(�k, ω) = −E2
g(

�k)G0(�k,−ω) (5)

where Eg(�k) is the value of the phenomenological pseudo-gap. We recall that the normal state
one-particle Green function and the self-energy are related by [26]

G(�k, ω) = 1

[ω + µ − ε(�k) − �(�k, ω)]
. (6)

In short, we conclude the following:

• The values of �0/4t strongly depend on the chosen values of ωD/4t . For example, small
values of ωD/4t decrease the value of �0/4t , or require larger values of V/4t to produce
the same values of �0/4t .

• The values of �0/4t strongly depend on the chosen values of α′. For example,
∀ α′ ∈ (−1/2, +1/2) studied, increasing the values of α′ increases the values of �0/4t .

• There is not a metallic phase, i.e., we have found that �/4t → 0 exponentially for
V/4t → 0, ∀ n, ∀ α′, and ∀ ωD/4t .

• The crossover BCS–BE line, namely (n, V/4t) for fixed values of n, moves towards larger
values of V/4t for small values of ωD/4t as well as for decreasing values of α′.

• The pure BE limit is reached at large values of ωD/t , namely, ωD/t � 8.0. This is
equivalent to taking χ(�k) ≡ 1, ∀ �k.

Finally, we recognize that the present model is too simple to be applicable to the high
temperature cuprate superconductors, since we should include self-energy effects, such as the
pseudo-gap discussed previously. Moreover, Andrenacci et al [32] have studied the evolution
from BCS superconductivity to Bose–Einstein condensation using the current correlation
function for a three-dimensional system of fermions embedded in a homogeneous background
and mutually interacting via an attractive short range potential, below the superconducting
critical temperature. They have used diagrammatic techniques in the broken phase. Work
along these lines is in progress [33], taking into account the effect of a phenomenological
pseudo-gap on the crossover phase diagram. One of the relevant conclusions reached with this
phenomenological model of the pseudo-gap is that a metallic line and an insulating phase are
present, which were not present in previous papers [2, 23, 24].
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